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Abstract

The wavelet expansion is used in order to evaluate the angular dependence of the radiative intensity in the solution

of the radiative transfer equation. The radiative intensity is expanded in terms of orthogonal Daubechies� wavelet basis
in the angular domain. The method is applied to a two-dimensional rectangular enclosure with an absorbing, emitting

and nonscattering medium in radiative equilibrium. One of the boundary surfaces is maintained at constant temper-

ature T1, while others are kept cold. This boundary conditions are chosen to demonstrate the effectiveness of the method
in dealing with the geometries which are sensitive to ray effects. Centerline emissive power and surface heat flux dis-

tributions are compared well with the results given by the standard discrete ordinates method, the modified discrete

ordinates method and also with the available exact solutions.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Radiation is the dominant mode of heat transfer in

many high-temperature systems and various methods

have been proposed for the solution of the radiative

transfer equation (RTE). These include Monte Carlo,

zonal, spherical harmonics (PN approximation), discrete

ordinates (SN ), finite-volume methods [1,2]. The zonal

and Monte Carlo methods are very accurate. However,

it is now well established that both these methods are

computationally intensive and are difficult to incorpo-

rate. The PN methods have received much attention, yet

the P1 approximation is inaccurate and the formulation

of higher order approximations is complicated and their

implementation leads to important computational times

without substantial gain in accuracy. Among others, the

discrete ordinates method has had the most attention

owing to its simple formulation, relatively good accu-

racy and compatibility with existing computer codes

used in the transport processes involved in many con-

vective transport problems. However, discrete ordinates

predictions suffer from some shortcomings such as ray

effects, occurrence of negative intensities during the so-

lution process, and false scattering (a numerical phe-

nomenon arising from the chosen spatial discretization

scheme) [3]. Cheong and Song [4] incorporated cubic

interpolation into the standard discrete ordinates me-

thod (SDO), considering numerical accuracy and grid

dependence. They showed that discrete ordinates inter-

polation method (DOIM) mitigates the errors intro-

duced by false scattering. Nonetheless, the DOIM does

not improve the results in terms of ray effects. In order

to deal with ray effects, Ramankutty and Crosbie [5]

introduced modified discrete ordinates method (MDO),

a semi-analytic method. They split the intensity into

direct and diffuse components. The direct component

is determined analytically, and the diffuse transport

equation is solved numerically by conventional discrete

ordinates procedure. MDO decreased the anomalies

caused by the ray effects, yet there can be observed some

anomalies for small aspect ratios. Besides, it is hard

to handle anisotropic and other scattering models with

MDO due to its analytic nature. The finite-volume
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method (FVM) [6,7] is a discrete ordinates type of

method. The FVM can be regarded as the most so-

phisticated scheme among the currently available

schemes. The main advantage of the FVM procedure is

that a user has a complete flexibility in laying out the

spatial and angular grids that best capture the physics of

a given problem. However, there is a great complexity in

extending its application to three-dimensional enclo-

sures. Ray effects and false scattering are also encoun-

tered with the FVM.

In the past decade, the theory of wavelet analysis has

been developed and applied to various fields such as

signal processing, solution of partial differential equa-

tions [8] and integro-differential equations [9]. Wavelet

analysis can be viewed as a multi-resolution analysis

which consist of a sequence of successive approximation

spaces. Donoho [10] showed that wavelets are uncon-

ditional bases for a very wide set of function classes.

Particularly, when the functions exhibit localized varia-

tion, wavelets provide very good approximations.

Bayazitoglu and Wang [11] introduced the wavelet

expansion into the solution of radiative transfer prob-

lems for nongray media. They used the wavelets in order

to evaluate the spectral intensity function in frequency

domain. In this work PN approximation was used. Later,

Wang and Bayazitoglu [12,13] replaced the PN approxi-

mation with the discrete ordinates procedure.

The purpose of this article is to present a new nu-

merical scheme which introduces the wavelets expansion

in the evaluation of radiative intensity in angular

domain. The intensity is expanded in terms of wavelet

functions in angular domain. By doing so, the infor-

mation related to directional distribution of the intensity

field is stored in wavelets. This transforms the RTE to

a new set of partial differential equations in terms of

wavelet expansion coefficients which contains the fre-

quency and spatial information of the intensity. This

new set of partial differential equations are solved with

finite differencing in spatial coordinates.

In this manuscript, first mathematical background on

wavelets and details of the application of the method

to the RTE is presented, then a two-dimensional test

problem is discussed.

2. Mathematical analysis and formulation

In order to construct a wavelet function w, Daube-
chies [14] started from the dilation equation for the

scaling function u,

uðxÞ ¼
X
n

hnu�1;n ¼
ffiffiffi
2

p X
n

hnuð2x� nÞ n ¼ 0; N � 1

ð1Þ

and found that the wavelet function satisfies a similar

dilation equation,

Nomenclature

am;n, bm;n, cm;n, dm;n wavelet expansion coefficients of

radiative intensity

Amm0 ;nn0 , Bmm0 ;nn0 bookkeeping matrixes

E emissive power (¼ rT 4)

i; j; k; l radiative intensity in four subdomains

I radiative intensity

h wavelet coefficient

L distance between the plates for one-dimen-

sional geometry

N number of wavelet expansion terms

q radiative heat flux

r aspect ratio of two-dimensional rectangular

enclosure

T temperature

Wi wrapped Daubechies wavelet functions

Wi;j two-dimensional wrapped Daubechies

wavelet functions

x; y; z coordinates

Greek symbols

d Kronecker d-function
e emissivity

/ azimuthal angle measured from the positive

x-axis

u dilation function

j absorption coefficient

l; n directional cosines

h polar angle measured from the positive z-

axis

q reflectivity

r Stefan–Boltzmann constant

sy , sy optical thicknesses in y- and z-directions

w wavelet function

Subscripts

m;m0; n; n0 wavelet basis

1 hot wall

2 cold walls

Superscripts

t transpose

þ;� positive and negative directions in one-di-

mensional case
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wðxÞ ¼
ffiffiffi
2

p X
n

ð�1Þn�1hN�n�1uð2x� nÞ n ¼ 0; N � 1

ð2Þ

More importantly, a set of hn coefficients up to N ¼ 20

(where N has to be even) is constructed. Since u and w
have finite support (i.e., they only have nonzero values

in a finite interval), they are calculated numerically.

Daubechies [14] proved that wavelets construct a set of

orthogonal bases for the L2 function space, and gave

a detailed construction procedure for these wavelets.

Newland [15] gave a wavelet series expansion of the L2

function f ðtÞ as follows:

f ðtÞ ¼ b0 þ
X
j

X
k

b2jþkW ð2jt � kÞ; 06 t < 1;

j ¼ 0;1; k ¼ 0; 2j � 1 ð3Þ

where W ð2jt � kÞ are Daubechies� wavelets confined in

the interval 06 t < 1 and wrapped around this interval

as many times as necessary to ensure that their entire

length is included in this interval; therefore, outside of

this interval these wrapped around wavelets vanish to

zero. The inner product of any single wavelet or any two

distinct wavelets from the same family is identically zero.

These orthogonality properties are expressed as

Z 1

0

W ð2jt � kÞW ð2j0 t � k0Þdt ¼ djj0dkk0 ð4aÞ

Z 1

0

W ð2jt � kÞdt ¼ 0 ð4bÞ

where d is the Kronecker d function. The general coef-

ficients can be calculated by taking the inner product of

the function and the wavelet basis as

b0 ¼
Z 1

0

f ðtÞdt ð5aÞ

b2jþk ¼
Z 1

0

f ðtÞW ð2jt � kÞdt ð5bÞ

Newland [15] has developed a very efficient algorithm to

compute the discrete wavelet transform Eqs. (5a) and

(5b) from sampling points of the function. The wavelets

Wm are calculated numerically from the inverse discrete

wavelet transform.

Wavelet expansion can be applied to a two-dimen-

sional function f ðx; yÞ function in a similar fashion to

one-dimensional case (Eq. (3)) [15]:

f ðx; yÞ ¼ WðxÞCWtðyÞ ð6Þ

WðxÞ and WðyÞ are 1	 N wavelet basis matrices, C is

N 	 N wavelet coefficient matrix. N is the number of

wavelet basis that are used for each dependent variable

of the function. We can rearrange the two-dimensional

expansion with a different notations in the following

way:

f ðx; yÞ ¼
XN
m

XN
n

cm;nWm;nðx; yÞ ð7Þ

where Wm;nðx; yÞ are the two-dimensional wavelets.
We consider radiative heat transfer in absorb-

ing, emitting, nonscattering, two-dimensional rectangu-

lar media bounded by diffusely emitting and reflecting

opaque walls. The radiative properties are assumed gray

and spatially homogeneous. A schematic of the physical

model and coordinates is illustrated in Fig. 1. The

mathematical description to this problem is

sin h sin/
oIðsy ; sz; h;/Þ

osy
þ cos h

oIðsy ; sz; h;/Þ
osz

þ Iðsy ; sz; h;/Þ ¼ Ibðsy ; szÞ ð8Þ

where Iðsy ; sz; h;/Þ is the total intensity at the position

(sy ; sz) and in a direction which is expressed in terms of

the polar angle h and the azimuthal angle / (see Fig. 1).

Iðsy ; sz; h;/Þ 2 L2ðRÞ is bounded in the angular domain.

Ib is the black body intensity.

Ibðsy ; szÞ ¼ rT 4ðsy ; szÞ=p ð9Þ

where r is the Stefan–Boltzmann constant. sy ¼ jy and
sz ¼ jz are optical thicknesses and j is the absorption

coefficient of the medium. Instead of the traditional

definition of directional cosines, we prefer to use the

following parameters: l ¼ cos h and n ¼ sin/. The goal
is to limit the number of angular parameters to two re-

gardless of geometry being two- or three-dimensional.

With these parameters, we will rearrange Eq. (8):

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p oI
osy

þ l
oI
osz

þ I ¼ Ib ð10Þ

τ τ τ τ
τ

τ

τ
τ

ττ

τ

φ

φ

θ
θ

Fig. 1. Sub-domains for angular variation of the radiative in-

tensity.
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The procedure that we will follow requires the expansion

of the intensity function I ¼ Iðsy ; sz; h;/Þ in angular

domain ðl; nÞ into the wavelet series. We will use the

Daubechies� wavelets and they have only finite support

in [0,1]. However, l and n have values from negative one

to positive one. Therefore, we will divide the angular

domain into four subdomains (Fig. 2), and denote the

intensity I with i, j, k, l in these subdomains:

i ¼ iðsy ; sz; l; nÞ where 06 l < 1 and 06 n < 1

j ¼ jðsy ; sz; l; nÞ where � 16 l < 0 and 06 n < 1

k ¼ kðsy ; sz; l; nÞ where 06l < 1 and � 16 n < 0

l ¼ lðsy ; sz;l; nÞ where � 16l < 0 and � 16n < 0

If we shift the directional cosines so that 06 l < 1 and

06 n < 1 for each subdomains, we can rewrite RTE in

these subdomains as follows:

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p oi
osy

þ l
oi
osz

þ i ¼ Ib

06 l < 1 and 06 n < 1 ð11aÞ

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p oj
osy

� l
oj
osz

þ j ¼ Ib

06 l < 1 and 06 n < 1 ð11bÞ

� n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p ok
osy

þ l
ok
osz

þ k ¼ Ib

06 l < 1 and 06 n < 1 ð11cÞ

� n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p ol
osy

� l
ol
osz

þ l ¼ Ib

06 l < 1 and 06 n < 1 ð11dÞ

Boundary conditions for the above set of equations are

given below:

iðsy ; 0; l; nÞ ¼ e1Ibðsy ; 0Þ þ
q1

p

Z 1

0

Z 1

0

jðsy ; 0; l; nÞ
�

þ lðsy ; 0; l; nÞ
� lffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p dldn;

� sy0 < sy < sy0 ð12aÞ

ið�sy0; sz; l; nÞ ¼ e2Ibð�sy0; szÞ

þ q2

p

Z 1

0

Z 1

0

kð
�

� sy0; sz; l; nÞ

þ lð � sy0; sz; l; nÞ
� lffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p dldn;

0 < sz < sz0 ð12bÞ

where e, q are emissivity and reflectivity of the bound-

aries. Similar expressions for j, k and l could be written.

For brevity, we will not include those in this paper. As it

can be seen from above equations, a singularity occurs

in the integration. These singularities are on the limits

of the integrations. Hence, they can be treated with the

methods dealing with the singularities of this type [16].

Wavelet series expansions of the intensities i, j, k, l are

i ¼
X
m

X
n

am;nðsy ; szÞWm;nðl; nÞ ð13aÞ

j ¼
X
m

X
n

bm;nðsy ; szÞWm;nðl; nÞ ð13bÞ

k ¼
X
m

X
n

cm;nðsy ; szÞWm;nðl; nÞ ð13cÞ

l ¼
X
m

X
n

dm;nðsy ; szÞWm;nðl; nÞ ð13dÞ

where am;n, bm;n, cm;n and dm;n are wavelet expansion co-

efficients, and Wm;n are the two-dimensional wavelets. As

it can be seen from Eqs. (13a)–(13d), the wavelet coef-

ficients are only the function of position, and all the

information related to the directional distribution of the

intensities is packed in the wavelets. Now, we will insert

the Eqs. (13a)–(13d) into Eq. (11a).

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p o

osy

X
m

X
n

am;nðsy ; szÞWm;nðl; nÞ
" #

þ l
o

osz

X
m

X
n

am;nðsy ; szÞWm;nðl; nÞ
" #

þ
X
m

X
n

am;nðsy ; szÞWm;nðl; nÞ ¼ Ibðsy ; szÞ ð14Þ

Similar expressions can be obtained for Eqs. (11b)–

(11d). We will apply the Galerkin method to the above

equation. The weighting functions are chosen to be the

same functions as the wavelet bases. After multiplying

an individual wavelet on both sides and integrating in

the angular domain, and using the following orthogo-

nality properties of wavelets

Fig. 2. Two-dimensional enclosure.
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Z 1

l¼0

Z 1

n¼0
Wm;nðl; nÞWm0 ;n0 ðl; nÞdndl

¼ 1 if m ¼ m0 and n ¼ n0

0 otherwise

	
ð15aÞ

Z 1

l¼0

Z 1

n¼0
Wm;nðl; nÞdndl ¼ dm;1dn;1 ð15bÞ

we obtain following equations for four subdomains:X
m

X
n

Amm0 ;nn0
oam;nðsy ; szÞ

osy



þ Bmm0 ;nn0

oam;nðsy ; szÞ
osz

�

þ am0 ;n0 ðsy ; szÞ ¼ Ibðsy ; szÞdm0 ;1dn0 ;1 ð16aÞ
X
m

X
n

Amm0 ;nn0
obm;nðsy ; szÞ

osy



� Bmm0 ;nn0

obm;nðsy ; szÞ
osz

�

þ bm0 ;n0 ðsy ; szÞ ¼ Ibðsy ; szÞdm0 ;1dn0 ;1 ð16bÞ
X
m

X
n



� Amm0 ;nn0

ocm;nðsy ; szÞ
osy

þ Bmm0 ;nn0
ocm;nðsy ; szÞ

osz

�

þ cm0 ;n0 ðsy ; szÞ ¼ Ibðsy ; szÞdm0 ;1dn0 ;1 ð16cÞ
X
m

X
n



� Amm0 ;nn0

odm;nðsy ; szÞ
osy

� Bmm0 ;nn0
odm;nðsy ; szÞ

osz

�

þ dm0 ;n0 ðsy ; szÞ ¼ Ibðsy ; szÞdm0 ;1dn0 ;1 ð16dÞ

where Amm0 ;nn0 and Bmm0 ;nn0 are defined as

Amm0 ;nn0 ¼
Z 1

l¼0

Z 1

n¼0
ðn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
ÞWm;nðl; nÞWm0 ;n0 ðl; nÞdndl

ð17aÞ

Bmm0 ;nn0 ¼
Z 1

l¼0

Z 1

n¼0
lWm;nðl; nÞWm0 ;n0 ðl; nÞdndl ð17bÞ

and can be readily calculated. In other words, they are

known coefficient matrices of the differential Eqs. (16a)–

(16d). The boundary conditions for Eq. (16a) in its most

general form can be written as

am0 ;n0 ðsy ¼ �sy0; szÞ

¼ e1Ibðsy

(
¼ � sy0; szÞ þ

q1

p

X
m

X
n

cm;nðsy
�

¼ � sy0; szÞ þ dm;nðsy ¼ � sy0; szÞ
�

	
Z 1

0

Z 1

0

Wm;nðl; nÞ
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p dldn

)
dm0 ;1dn0 ;1

ð18aÞ
am0 ;n0 ðsy ; sz ¼ 0Þ

¼ e1Ibðsy ; sz

(
¼ 0Þ þ q1

p

X
m

X
n

bm;nðsy ; sz
�

¼ 0Þ

þ dm;nðsy ; sz ¼ 0Þ
� Z 1

0

Z 1

0

Wm;nðl; nÞ

	 lffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p dldn

)
dm0 ;1dn0 ;1 ð18bÞ

by utilizing the wavelet expansion method. Similar ex-

pressions can be obtained for Eqs. (16b)–(16d).

With the help of the procedure explained above, the

RTE has been converted to a new set of partial differ-

ential equations written in terms of wavelet coefficients.

There are many types of numerical differencing schemes

to solve Eqs. (16a)–(16d). Here, we chose a finite dif-

ferencing method with the step scheme. We skip the

details of this procedure.

In order to complete the solution method for a ra-

diative heat transfer system, we need to incorporate the

energy equation into the solution procedure. This is

achieved by the modified quasi-linearization algorithm.

Details of this can be found in Refs. [13,18]. In this

work, we assumed radiative equilibrium and energy

equation in this case is Dq ¼ 0. After solving Eqs. (16a)–

(16d) for the wavelet expansion coefficients a, b, c and d,
heat fluxes are calculated with the following expression:

qyðsy ; szÞ ¼ 2
X
m

X
n

am;nðsy ; szÞ
�

þ bm;nðsy ; szÞ

� cm;nðsy ; szÞ � dm;nðsy ; szÞ
�

	
Z 1

0

Z 1

0

Wm;nðl; nÞ
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p dldn ð19aÞ

qzðsy ; szÞ ¼ 2
X
m

X
n

am;nðsy ; szÞ
�

� bm;nðsy ; szÞ

þ cm;nðsy ; szÞ � dm;nðsy ; szÞ
�

	
Z 1

0

Z 1

0

Wm;nðl; nÞ
lffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p dldn ð19bÞ

Again the singularity in the integration is treated with

the methods explained in [16].

3. Results

The wavelet method is applied to a two-dimensional

rectangular enclosure containing an absorbing, emitting

and nonscattering medium as illustrated in Fig. 1. All

the surfaces are assumed to be black and isothermal.

The bottom wall is exposed to a diffuse loading (T1 ¼ 1Þ,
and no loading is applied on the other walls (T2 ¼ 0Þ.
For this system, aspect ratio is defined as r ¼ 2sy0=sz0.
This test problem is chosen because the discrete ordi-

nates type of methods are susceptible to ray effects for

the specified boundary conditions. However, the wavelet

method is immune from these effects since it fully models

the angular distribution of the intensity at every point

through the spatial domain. We illustrate this with an

example: Let�s consider an absorbing, emitting and

nonscattering, plane-parallel medium. (Here, we choose

this geometry as the example case because analytical

solution to the intensity field is available for the one-

dimensional problems [1].) The left wall is hot while the

right one is kept cold. Fig. 3 shows the intensity field at a

point half way through the distance between the plates,L.
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The error in the approximate intensity field as compared

with the exact solution [1] at x ¼ L=2 at polar angles

h ¼ 0�, 51.7553�, 81.7843� and 159.4713� are 0.53%,

0.72%, 0.32% and 1.79%, respectively. This proves that

the present method successfully approximates the an-

gular distribution of the radiative intensity. After ob-

taining intensity distribution in angular domain at each

node of a spatial grid, the method uses a finite differ-

encing scheme between these approximations.

The nondimensional emissive power at the centerline

and the heat flux results at the top wall are presented in

Figs. 4–8. They are compared with exact results [17], and

with those of the standard discrete ordinates (SDO-S8)

[5] and the modified discrete ordinates (MDO-S8) [5]

methods. The MDO has been developed to mitigate the

ray effects in SDO results and it has been successful to

some extent. However, it is important to state that it is a

semi-analytical method. This analytic nature is a setback

in terms of the full automation of the solution method.

Besides, it presents difficulties in handling radiation

problems that involve anisotropic and other types scat-

tering phase functions [5].

The nondimensional emissive power results for dif-

ferent aspect ratios are plotted in Fig. 4 and compared

with the exact results [17]. Emissive power results display

a good agreement with the exact results. Figs. 5–8 pre-

sent the surface heat flux results at the top wall. For all

the aspect ratio values, the surface heat flux results of the

SDO are inaccurate. They display oscillations especially

for small aspect ratios. The MDO agrees well with the

exact results for all the aspect ratios except for r ¼ 0:1.

Fig. 3. Intensity field at the midpoint of the plane-parallel ge-

ometry.

Fig. 4. Comparison of the centerline nondimensional emissive

power results for different aspect ratios with exact results [17],

sy0 ¼ 0:5.

Fig. 5. Comparison of the nondimensional surface heat flux

results given by wavelet, the SDO [5], the MDO [5] methods and

exact solution [17] at the top wall for r ¼ 0:1 and sz0 ¼ 1.

Fig. 6. Comparison of the nondimensional surface heat flux

results given by wavelet, the SDO [5], the MDO [5] methods and

exact solution [17] at the top wall for r ¼ 0:5 and sz0 ¼ 1.
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Ramankutty and Crosbie [5] attributed the presence of

anomalies at the heat flux results in the case of r ¼ 0:1
to the inability of the MDO to remove the ray effects

completely. The present method exhibits good agree-

ment with exact results for all the aspect ratio cases. The

errors of the present method do not show dependence to

aspect ratio. This might be explained as follows: Wavelet

bases are very capable of approximating functions with

local changes. Therefore the wavelet method does not

suffer from the ray effects. However, the finite dif-

ferencing scheme which is used to solve the Eqs. (16a)–

(16d) is incapable of completely capturing sharp

temperature and intensity gradients through the spatial

domain, and causes them to be smoothened out. As it

can be seen from Figs. 5–8, the surface heat flux profiles

are somewhat flattened for all cases. Hence, the utiliza-

tion of a better spatial discretization method could im-

prove the results.

The code when a 20	 20 spatial discretization and

eight wavelet expansion coefficients are used converges

in 15 s for r ¼ 0:1, 25 s for r ¼ 1 and 30 s for r ¼ 2 on a

SPARC Ultra-4 machine.

4. Conclusion

The present method is fully numerical. It utilizes the

wavelet bases to model intensity field in angular do-

main. In this work Daubechies� orthogonal wavelet

bases are used. However, any other orthogonal wavelet

can be used in the same way. This process converts

the RTE into a set of partial differential equations (Eqs.

(17a) and (17b)) only in terms of position. This set can

be handled with any spatial discretization method. In

this work finite differencing with step scheme is used.

The results agree fairly well with the exact results. They

might be improved by introducing better spatial dis-

cretization methods. The method is flexible to handle

the radiative transfer problems with an anisotropic

scattering medium. The application of the method to a

problem with a linear anisotropic medium is demon-

strated in [19].
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